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Abstract

We propose a qualitative physical model of galvanotaxis of Paramecium cells using a bottom-up approach to link the microscopic

ciliary motion and the macroscopic behavior of the cells. From the characteristic pattern of ciliary motion called the Ludloff

phenomenon, the torque that orients the cell toward the cathode is derived mathematically. Dynamical equations of motion are derived

and their stability is discussed. In numerical simulations using our model, cells exhibit realistic behavior, such as U-turns, like real cells.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

Galvanotaxis is an intrinsic locomotor response to an
electrical stimulus, universally observed in diverse types of
cells (Robinson, 1985), such as bacteria (Shi et al., 1996),
amoebae and slime molds (Korohoda et al., 2000;
Anderson, 1951), protozoa (Ludloff, 1895), and vertebrate
cells including human tissue cells (Erickson and Nuccitelli,
1984; Orida and Feldman, 1982; Zhang et al., 2000;
Fukushima et al., 1953; Gruler and Nuccitelli, 2000;
Djamgoz et al., 2001). Recent studies have indicated that
galvanotaxis may be involved in a number of biological
phenomena (McCaig et al., 2005), such as embryo
development (Erickson and Nuccitelli, 1984; Levin, 2003)
and wound healing (Robinson, 1985; Chiang et al., 1992).

Ciliates, especially Paramecium cells, exhibit quite strong
negative galvanotaxis (Machemer and de Peyer, 1977).
That is to say, viewed macroscopically, the cell is forced to
swim toward the cathode in a DC electric field. Since the
first reports on galvanotaxis by Verworn (1889, 1896),
e front matter r 2006 Elsevier Ltd. All rights reserved.
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pioneers in microbiology have eagerly investigated galva-
notaxis of ciliates (Ludloff, 1895; Jennings, 1923; Kamada,
1929, 1931a,b; Kinosita, 1939). They found that galvano-
tactic movement is caused by a change in direction of the
ciliary beating, in contrast to general cells, which move by
elongation of actin filaments followed by rearrangement of
the cytoskeleton (Mycielska and Djamgoz, 2004). This
characteristic pattern of ciliary beating in Paramecium

galvanotaxis is called the Ludloff phenomenon, explained
qualitatively by Ludloff (1895). Since his original work,
however, there has been almost no quantitative discussion
of the physical relationship between the microscopic ciliary
beating pattern and the macroscopic behavior of a cell. The
purpose of this paper, therefore, is to propose a novel
physical scheme for Paramecium galvanotaxis to provide a
quantitative explanation for the Ludloff phenomenon,
using a bottom–up approach based on systems theory.
Although several properties of Paramecium cells have

been modeled, conventional models have mainly been
physiological and biochemical ones that have focused on
the membrane potential or signal transduction, ignoring
the physical properties (Jahn, 1961; Cooper and Schliwa,
1985). Moreover, the few physical models that have been
presented have tended to disregard galvanotaxis. For
example, a physical model of the swimming behavior
proposed by Naitoh and Sugino (1984) considered only the
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behavior in the absence of an electrical stimulus. Though
there are some physical Paramecium models based on
gravitaxis or geotaxis (Fukui and Asai, 1980; Mogami
et al., 2001; Hemmersbach et al., 2005), chemotaxis or
chemokinesis (Houten and Houten, 1982; Sakane et al.,
2001; Hirano et al., 2005), avoiding reaction (Sakane et al.,
2001), calcium regulation (Laurent and Fleury, 1995), and
thermotaxis (Oosawa and Nakaoka, 1977), they are not
applicable to galvanotaxis, which is a side-effect of the
electrophysiological properties of the membrane, a funda-
mentally different mechanism from other taxis or reactions.
Fearing (1991) and Itoh (2000) independently performed
pioneering experiments on controlling protozoa motion
using galvanotaxis, but their approach was based on
empirical rules. Some models on general taxis, that is,
not limited to galvanotaxis in paramecia, are based on
top–down qualitative mathematical assumptions rather
than firm physical grounds (Schienbein and Gruler, 1993;
Ohtake et al., 1997; Gruler and Nuccitelli, 2000; Ionides
et al., 2003). One rare physical model of galvanotaxis is
that constructed by Roberts (1970); however, its validity is
uncertain because his assumptions were rough, and the
accuracy of his model was not fully verified by comparing it
with experimental data. This paper is the first attempt to
construct a physical model of Paramecium galvanotaxis
based on mechanics using a bottom–up approach, accom-
panied with experimental validation.

Our original motivation for this work stemmed from
an engineering viewpoint; we have studied microrobotic
applications of Paramecium cells, and have utilized
galvanotaxis as a means of actuation of cells (Ogawa
et al., 2005). The model that we propose in this paper was
originally constructed in order to introduce the methodol-
ogies of robotics and systems theory based on physics for
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Fig. 1. Qualitative explanation for galvanotaxis. By applying an electric field, c

(Kamada, 1929), and cilia on the cathodal end beat more frequently but in the

ciliary beatings generates a rotational force and orients the cell toward the ca
controlling cells, and it was found to be quite useful in
controlling cells and trajectory planning. We believe that
our model also has sufficient significance and novelty from
a biological point of view.

2. Model of galvanotaxis

2.1. Paramecium and its galvanotaxis

2.1.1. Biological background

In this paper, we consider Paramecium caudatum because
it has been extensively studied and its behavior is well
known. P. caudatum is a unicellular protozoan with an
ellipsoidal shape, inhabiting freshwater. It swims by waving
cilia on its body; thousands of cilia beat the water
backward to yield a forward reaction force (Naitoh and
Sugino, 1984). The ciliary motion is controlled by shifts in
the membrane potential and the accompanying changes in
ion concentration in the cell.
When an external electrical stimulus is applied, it modifies

the membrane potential and alters the ciliary movements,
thus affecting the cell motion. Viewed macroscopically, the
cell is made to swim toward the cathode. This phenomenon
is called negative galvanotaxis. Note that galvanotaxis is
simply a side-effect of the electrophysiological nature of the
cell, unlike chemotaxis and phototaxis, which are behaviors
conferring a survival advantage.
A Paramecium cell in an electric field shows a

characteristic ciliary movement pattern. Assume an ima-
ginary plane that is perpendicular to the electric field and
located near the center of the cell, slightly closer to the
cathodal end, dividing the cell into two parts, as illustrated
in Fig. 1. The electric field causes cilia on the anodal end to
beat more frequently (ciliary augmentation) (Kamada,
Cathode
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ilia on the anodal end begin to beat more frequently (ciliary augmentation)

opposite direction (ciliary reversal) (Ludloff, 1895). The asymmetry in the
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1929), and the cilia on the cathodal end also beat more
frequently but in the opposite direction (ciliary reversal)
(Ludloff, 1895). This is called the Ludloff phenomenon,
and it provides a simple and qualitative explanation for
galvanotaxis: the asymmetry in direction of the ciliary
beatings generates a rotational force and orients the cell
toward the cathode.

Under weak electric field, the boundary between ciliary
augmentation and ciliary reversal is located toward the
cathode. This deviation is due to the interaction between the
negative membrane potential ð� � 30mVÞ and potential
gradient distribution in the medium (Machemer and de
Peyer, 1977; Görtz, 1988). Kamada (1931a,b) observed it
and found that the boundary location changes slightly and
inconsistently as the stimulus magnitude increases, which we
do not consider in this paper for simplicity.

The Ludloff phenomenon was first described by Ludloff
(1895). He concluded that this phenomenon was just
an inorganic one caused by electromagnetic interaction
between the electric current and the cilia, which is different
from the current understanding based on electrophysiology.

Based on electrochemical and electrophysiological
knowledge (Jahn, 1961; Cooper and Schliwa, 1985), the
mechanism of the Ludloff phenomenon can be understood
as follows:
1.
 When an electric field is applied, a voltage gradient
appears from the anode to the cathode. According to
electrochemistry, most of the gradient is concentrated
near the regions called electric double layers formed
near the electrodes, and only a slight gradient is
produced in the bulk solution due to its electric
resistance (Bergethon, 1998).
2.
 The gradient forms equipotential surfaces around the
cell. Because the Paramecium cell surface itself is an
equipotential and the body can be treated as a
conductor (Eckert and Naitoh, 1970, 1972), the equi-
potential surfaces wrap around the cell, resulting in
extremely strong fields at the anodal and cathodal ends.
3.
 At the cathodal end, the difference between intracellular
and extracellular potentials decreases, which leads
to depolarization. At the anodal end, the difference
between intracellular and extracellular potentials in-
creases, which leads to hyperpolarization (Cooper and
Schliwa, 1985).
4.
 At the cathodal end, depolarization causes voltage-
dependent Ca2þ channels (VDCCs) to be activated.
Because the intracellular concentration of Ca2þ is
extremely low, Ca2þ ions flow into the cell through the
VDCCs, which causes further activation of the VDCCs
(Naitoh et al., 1972). At the anodal end, hyperpolariza-
tion causes voltage-dependent Kþ channels (VDPCs) to
be activated. Because the intracellular concentration of
Kþ is higher, Kþ ions flow out of the cell through the
VDPCs, which causes further activation of the VDPCs
(Oertel et al., 1978).
5.
 At the cathodal end, depolarization and the increase in
Ca2þ ion concentration cause ciliary reversal (Naitoh
and Kaneko, 1972). At the anodal end, hyperpolariza-
tion causes ciliary augmentation (Machemer, 1974;
Machemer and de Peyer, 1977). The precise reasons
for these phenomena are still unknown.
6.
 Ciliary reversal and ciliary augmentation yield a back-
ward force and a forward force, respectively. When the
cell is tilted, therefore, the asymmetry of the two forces
generates a torque.
7.
 The cell is directed toward the cathode by the torque.
Consequently, the cell swims toward the cathode.

The mechanism described above shows that galvanotaxis
is caused by electrochemical factors (1, 2), physiological
factors (3, 5), and physical factors (6, 7). As discussed in
Introduction, electrochemical and physiological factors
have mainly been considered in previous studies. However,
much remains unknown, and further theoretical studies
cannot proceed without experimental data elucidating the
structural and biochemical properties. On the other hand,
though physical factors have not been considered suffi-
ciently, they play an essential role in galvanotaxis and
may be well described using simple physics. This paper
concentrates on physical factors, while regarding electro-
chemical and physiological factors as ‘‘black boxes’’.

2.2. Assumptions

2.2.1. Simplification of cell motion

Strictly speaking, the motion of a Paramecium cell is
composed of three elements as illustrated in Fig. 2: forward
propulsion, a rotation around its longitudinal axis, and a
rotation around its dorsoventral axis due to its asymme-
trical shape. Consequently, the cell swims forward while
spinning along a spiral (Naitoh and Sugino, 1984). The
dominant element in galvanotaxis is the forward propul-
sion. For simplicity, we will not discuss the other two
elements, which are not essential for galvanotaxis. Under
this assumption, the cell simply moves straight ahead when
there is no electric field.
By disregarding the rotational components, we can

describe the cell motion in a two-dimensional plane
including the cell axis and the electric field vector.
Hereafter, we consider cell motion only in this plane. At
the same time, because the motion of the cilia can be
assumed to be symmetric with respect to this plane, the
movements of the cilia in this plane can sufficiently
represent the movements of all cilia. Thus, we consider
the cell as a two-dimensional ellipsoid in this plane.

2.2.2. Coordinate systems

We define two coordinate systems on the plane, a global
one ðX ;Y Þ and a local one ðx; yÞ, as shown in Fig. 3. The
global coordinate system is allocentric, that is, fixed with
respect to the external world, with the X-axis parallel to
the electric field E. The local coordinate system (introduced
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Fig. 3. Relation between the global coordinate system ðX ;Y Þ and the local

coordinate system ðx; yÞ. The electric field E is applied along the X-axis.

The cell is located at ðX ;Y Þ with tilt angle f.
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Fig. 2. Schematic representation of forces produced by movements of cilia. The motion of a Paramecium cell is composed of: (1) forward propulsion; (2) a

rotation around its longitudinal axis, and (3) a rotation around its dorsoventral axis due to its asymmetrical shape. Reproduced from reference (Naitoh

and Sugino, 1984) with modification.
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to simplify the description) is egocentric, that is, fixed
with respect to the cell, with the x-axis parallel to the
longitudinal axis of the cell. Let f be the angle of the cell
axis in the global coordinate system (fo0 in Fig. 3, for the
sake of convenience in deriving the model).

We assume that the electric field is uniformly applied.
Yamane et al. (2004) confirmed the validity of this
assumption in a wide area by measuring the potential
distribution in the solution.

Let the cell shape be an ellipsoid with a major axis of
length 2L and a minor axis of length 2R (L4R). In the
local coordinate system, the cell is represented as an
ellipsoid E:

E :
x2

L2
þ

y2

R2
¼ 1. (1)
2.2.3. Assumptions on ciliary motion

We assume that cilia are distributed uniformly around
the edge of the ellipsoid with linear density n. For
simplicity, we consider only two beating states, reverse
and normal. The direction of the effective stroke in beating
is oriented towards the anterior side in reverse beating, and
towards the posterior side in normal beating. In the
presence of an electric field, imagine a plane perpendicular
to the field (hereinafter referred to as ‘‘a boundary plane’’).
This plane divides the cell into two regions; cilia beating is
considered to be normal on the anodal side and reversed on
the cathodal side. In common electrical stimuli, the
boundary plane is formed towards the cathodal side
(Kamada, 1931a). The shortest distance between the plane
and the center of the cell is l, which is the offset of the
boundary and should be smaller than R. We assumed l to
be constant for simplicity in this paper.
The beating frequency of cilia is assumed to be

uniform over the whole cell, with a value j0 in the
absence of an electric field; this condition is hereinafter
referred to as the ‘‘regular state’’. When an electric field
E is applied, the frequency increases to j ¼ ð1þ bEÞj0,
where b is a positive parameter. This proportional
relationship is approximately derived from the experimen-
tal results by Itoh (2000), where the swimming speed is
approximately proportional to the electrical field, and from
the fact that the beating frequency is approximately
proportional to the membrane potential (Machemer,
1976). Let f 0 be the propulsion force yielded by one cilium
in the regular state, the force being proportional to the
frequency j0 (i.e. f 0 ¼ aj0, where a is a positive
coefficient). Let f ¼ aj ¼ ð1þ bEÞf 0 be the force in the
presence of the electric field.
2.3. Model of the torque

The phenomenon whereby a Paramecium cell swims
toward the cathode is due to a torque caused by asymmetry
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of ciliary motion. In this section, we estimate this torque.
First, consider an ellipsoid E in the local coordinate system,
as illustrated in Fig. 4. Note that the following model is
defined only if Ea0.

For convenience, let us introduce y ¼ �f as the angle of
the electric field E in the local coordinate system. Then the
boundary plane is expressed as a line L:

L : y ¼ �
1

tan y
xþ

l

sin y
. (2)

The asymmetry of ciliary beating exists only at the
substantially trapezoidal region formed by the intersection
of the boundary plane and the ellipsoid (shown as the
hatched region in Fig. 4. Draw two lines parallel to y-axis
from the two intersection points of E and L, and you will
get two more intersecting points. The resulting four points
make up the trapezoid). The forces yielded by cilia outside
this region are symmetrical and do not contribute to
rotation. Thus, we have only to consider the forces
generated at this trapezoidal region.

The x-coordinates of two vertical lines that define the
‘‘upper’’ side and ‘‘lower’’ side of the trapezoid (that is, the
sides parallel to the y-axis) are equal to those of two
intersecting points of E and L. These two coordinates,
x� and xþ, are obtained as two roots of the equation:

ðR2 sin2 yþ L2 cos2 yÞx2 � 2lL2 cos y � x

þ l2L2 � R2L2 sin2 y ¼ 0, ð3Þ

which is derived by eliminating y from Eqs. (1) and (2)
(obviously this equation always has two real roots). Let
xþ be the x-coordinate of the point with the larger
O
2R

F1

r

r

2L

Ciliary Augmentation

L

E

�

Fig. 4. Parameters in the local coordinate system. Only the cilia on the hatched

ellipsoid; 2L: the length of the cell; 2R: the width of the cell; E: the electric field

the electric field; l: the offset of L from the local origin; xþ: the x-coordinat

coordinate of the intersection of E and L (with negative y-coordinate); w: the ‘

for P1 and P2; F1, F2: the resultant forces yielded by the cilia.
y-coordinate and x� be the x-coordinate of the point with
the smaller y-coordinate.
Because it would be too complicated to consider the

individual minute forces generated by each cilium, here we
focus on the resultant forces for simplicity. We set the sites
of action, P1ðxa; yaÞ and P2ðxa;�yaÞ (yaX0), on the
midpoints of the trapezoid edges, and assume the direc-
tions of the forces to be tangential to the ellipsoid. We

define position vectors r1 ¼ OP1

��!
and r2 ¼ OP2

��!
.

Then we obtain xa (see Appendix B):

xa ¼
x� þ xþ

2
¼

lL2 cos y

R2 sin2 yþ L2 cos2 y
. (4)

Also, ya is obtained by substituting Eq. (4) into Eq. (1):

ya ¼
R

L

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � x2

a

q
.

The two tangential lines at the sites of action ðxa;�yaÞ

are given by

xa

L2
x�

ya

R2
y ¼ 1,

from which we get the inclinations of the two tangential
lines,

m ¼ �
R2xa

L2ya

,

and normalized tangent vectors

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
p ;

mffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þm2
p

� �
¼

L2yaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R4x2

a þ L4y2
a

q ;�
R2xaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R4x2
a þ L4y2

a

q
0
B@

1
CA.
F2

2

1

P2
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x

y

E
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trapezoidal region contribute to the rotation. E: the cell represented as an

; y: the angle of the electric field; L: the boundary plane perpendicular to

e of the intersection of E and L (with positive y-coordinate); x�: the x-

‘height’’ of the trapezoid; P1, P2: the sites of action; r1, r2: position vectors
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Let m1 be the tangent vector at P1 and m2 be that at P2.
Then unit force vectors, e1 at P1 and e2 at P2, are:

e1 ¼ �m1 ¼ �
L2yaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R4x2
a þ L4y2

a

q ;
R2xaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R4x2
a þ L4y2

a

q
0
B@

1
CA

ðfor reverse beatingÞ,

e2 ¼ m2 ¼
L2yaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R4x2
a þ L4y2

a

q ;
R2xaffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R4x2
a þ L4y2

a

q
0
B@

1
CA

ðfor normal beatingÞ,

considering the directions of the effective stroke in ciliary
beatings.

Moreover, let us suppose that the magnitude of the
resultant force is proportional to the ‘‘height’’ of the
trapezoid, or w (see Appendix B):

w ¼ x� � xþ ¼
2RL sin y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 sin2 yþ L2 cos2 y� l2

p
R2 sin2 yþ L2 cos2 y

,

which is a signed value whose sign is the same as y. Then
the propelling forces F1 and F2 at the points P1 and P2,
respectively, are written as:

F1 ¼ fwne1; F2 ¼ fwne2.

By assuming that the center of mass of the cell is located
at the center of the ellipsoid,1 we find the torques at the
points P1 and P2:

s1 ¼ r1 � F1; s2 ¼ r2 � F2,

where it should be noted that these vectors are treated as
three-dimensional in calculating cross products.

The torque rotating the cell body is given by:

s ¼ s1 þ s2.

Since its x and y components are obviously zero, hereafter
we call its z component, tz, the ‘‘torque’’.

Finally, by substituting f ¼ �y, the torque is described
in the global coordinate system as:

tzðfÞ ¼ �
4LR2fns

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2c2 þ R2s2 � l2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4c4 þ 2L2R2c2s2 þ R4s4 � L2l2c2 þ R2l2c2

p ,

(5)

where s ¼ sinf and c ¼ cosf. This equation describes the
torque generated in the cell oriented at the angle f.

2.4. Forward propulsion force

As mentioned above, only the cilia on the trapezoid
contribute to the rotation. Other cilia are responsible for
translational propulsion. Considering that the reversed
1It is reported that the center of mass is slightly deviated because of the

fore-aft asymmetry under the condition that Reynolds number is so small

(Mogami et al., 2001). However, we ignore the deviation for simplicity in

this paper.
effective strokes on the cathodal side produce a backward
force, we can derive the magnitude of the force F as:

F ¼

fnj½ðLþ xþÞ � ðL� x�Þ�j ¼ 2fnjxaj;

ðjL cos yj41Þ;

fnj½ðLþ xþÞ þ ðL� x�Þ�j ¼ fnð2L� jwjÞ;

ðjL cos yjo1Þ:

8>>>><
>>>>:

(6)

2.5. Equations of motion of paramecium cell

Using the torque estimated in Section 2.3, we now
discuss the equations of motion of the Paramecium cell.

2.5.1. Equation of motion for translational motion

In the micrometer-scale world that paramecia inhabit,
the inertial resistance of the fluid is small enough to be
negligible, and the viscous resistance becomes dominant.
This fact is also indicated by the small Reynolds number
Re for a Paramecium cell, estimated as

Re ¼ 2Lv=n ¼ 0:10,

by using cell length 2L ¼ 100mm, velocity v ¼ 1mm=s, and
dynamic viscosity of water n ¼ 1:00� 10�6 m2=s. Hence we
can apply Stokes’ law, derived from the Navier–Stokes
equation by ignoring inertial force.
Since a rigorous evaluation of the viscous resistance

around an ellipsoid is quite complicated, here we approx-
imate the viscosity by applying the formula for a sphere as
a substitute. According to Stokes’ law, the force exerted on
a sphere with radius a, moving with velocity v in a viscous
fluid is given by

F s ¼ 6pmav, (7)

where m is the viscosity of the fluid. From this equation, the
viscous force around the ellipsoidal cell can be obtained by
replacing the radius a by the cell radius R. Thus the
equation of motion for the translational motion of the cell
can be approximated by:

M €X þD _X ¼ F, (8)

where X ¼ ðX ;Y Þt is the cell position (a superscript t
means the transposition), F ¼ Fe is a forward propulsive
force, e ¼ ðcos f; sin fÞt is a unit vector along the body
axis, D ¼ F s=j _X j ¼ 6pmR is the viscous friction coefficient,
M ¼ rV is the cell mass, r is the cell density, and V ¼

4pLR2=3 is the cell volume.

2.5.2. Equation of motion for rotational motion

We now derive an equation of motion for the rotational
motion. As mentioned above, because evaluation of the
viscosity around the ellipsoid is too complicated, we again
substitute Stokes’ law for a sphere. A viscous resistance
torque against the rotation can be roughly approximated
by assuming two mass points on the longitudinal axis at a
quarter of the length (L=2) from the origin, substituting
v ¼ _f � L=2 and a ¼ L=2 into the Stokes’ law equation (7),
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Table 1

Parameters of the proposed model

Parameters Values Comments

Major cell axis 2L 100mm Our strain

Minor cell axis 2R 25mm Our strain

Boundary plane offset l 10mm (Jennings, 1923;

Kamada, 1931a)

Viscosity of water m 1:00� 10�3 kg=ðmsÞ At 20�C

Cell density r 1000kg=m3 Same as water

Increase in beating

frequency b
2:00� 10�3 V�1

N. Ogawa et al. / Journal of Theoretical Biology 242 (2006) 314–328320
and multiplying both sides by L=2:

ts ¼ 2� F s
L

2
¼ 12pm

L

2
_f

L

2

L

2
¼

3

2
pmL3 _f.

This derivation, however, may be too rough and the
coefficient 3=2 might be unreliable, which may cause
significant error in the model. Therefore, we introduce
coefficient d instead of the coefficient 3=2 to compensate
for the error. Thus, the equation of motion for the
rotational motion is given by

I €fþD0 _f ¼ tzðfÞ, (9)

where I ¼ pMðR2 þ L2Þ=5 is the moment of inertia for an
ellipsoid, and D0 ¼ ts= _f ¼ dpmL3 is the viscous friction
coefficient.

2.5.3. Integration of equations of motion

Integration of the equations of motion for the transla-
tional motion (8) and the rotational motion (9) leads to the
following equations with a notation common in systems
theory:

_q ¼ Aqþ BðqÞ, (10)

A ¼

0 0 1 0 0 0

0 0 0 1 0 0

0 0 �D=M 0 0 0

0 0 0 �D=M 0 0

0 0 0 0 0 1

0 0 0 0 0 �D0=I

0
BBBBBBBBB@

1
CCCCCCCCCA
,

BðqÞ ¼ 0; 0;
F

M
cos f;

F

M
sin f; 0;

tzðfÞ
I

� �t

,

where q ¼ ðX ;Y ; _X ; _Y ;f; _fÞt.

3. Numerical experiments

We performed some numerical experiments to verify the
equations of motion using numerical analysis software
(MATLAB, MathWorks Inc.).

3.1. Physical parameters

Table 1 shows several physical parameters used in the
numerical experiments. We obtained the cell size by
observing cells incubated in our laboratory; the size we
observed was smaller than the average reported by
Jennings (1923). The boundary plane offset l was estimated
from several illustrations shown in previous studies
(Jennings, 1923; Kamada, 1931a). The value of b, the
increase in beating frequency with electric field, was
estimated from the fact that the frequency increased to
around 50Hz under a stimulation of a few volts per
centimeter from the frequency in the regular state of
around 15–20Hz (Naitoh and Sugino, 1984).
The force yielded by cilia on the unit length, f 0n,
is still an unknown parameter. For rigorous evaluation,
we might have to consider the physical model of a
cilium (Sugino and Naitoh, 1982) and its interaction
with the surrounding fluid. However, our model itself is
based on approximation, and a strict evaluation of
f 0n is not so critical. Hence we estimated the order of
f 0n by using the swimming velocity measured in past
experiments.
The terminal velocity of a cell in the regular state

was obtained by substituting €X ¼ 0 into Eq. (8) under
conditions of f ¼ 0:

_X ¼ F=D ¼
jxajf¼0e

3pmR
f 0n. (11)

Since xa equals l at f ¼ 0, we can estimate f 0n from:

f 0n ¼
3pmR

l
j _X j. (12)

Measurement of the cell velocity by using a high-speed
tracking system (Oku et al., 2005) described later in Section
3.8.1, gave a velocity of around 400mm=s. Using this value,
we estimated f 0n to be 4:71� 10�6 N/m. In addition, we
adjusted the parameter d to be 7.5 based on experimental
data of the cell trajectories obtained by our system (Ogawa
et al., 2005).
3.2. Torque profile

Fig. 5 shows the torque tzðfÞ as a function of f. Note
that the torque affects the cell so as to decrease f, that is, to
make the cell turn toward the cathode.
These results indicate that the orientations f ¼ �p are

kind of ‘‘singular point’’ where no torque is produced, even
though the cell is oriented toward the anode. This means
that such a cell will move towards the anode, which seems
inconsistent with the observed behavior of negative
galvanotaxis. In practice, however, swimming paramecia
always sway slightly. The slight swaying of the cell
generates a torque, causing the cell to incline further. This
positive feedback rotates the cell and eventually directs it
toward the cathode.
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3.3. Angular stability in the proposed model

Eqs. (8) and (9) indicate that the equations of motion of
a Paramecium cell have a nonlinearity that might make the
model unstable. However, when the angle f is sufficiently
small, that is, the direction of the cell is close to that of the
electric field, it is possible to make the model approxi-
mately linear. In this section, we will linearize the model to
observe the stability for small f using methods commonly
used in systems theory. Note that discussion on lineariza-
tion is closed within this section and all numerical
experiments described later were performed without
linearization.

In Fig. 5, the z component of the torque, tzðfÞ, exhibits a
gradual monotonic decrease near f ¼ 0, which implies that
it can be regarded as linear with respect to f in this area.
Therefore, tzðfÞ can be approximated using the inclination
of the tangential line at f ¼ 0:

tzðfÞ ’
dtz

df

����
f¼0
� f ¼ �4

R2Lfn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � l2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4 � L2l2 þ R2l2

p f.

Then Eq. (9) becomes:

€f ¼ �
D0

I
_fþ

Q

I
f where Q ¼ �4

R2Lfn
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L2 � l2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
L4 � L2l2 þ R2l2

p .

By defining a state variable ~q ¼ ðf; _fÞt, the model of the
cell rotation becomes linear around the origin ~q ¼ 0:

_~q ¼ ~A~q; ~A ¼
0 1

Q=I �D0=I

 !
.

The eigenvalues of this matrix ~A are the roots of the
characteristic equation:

det jlIu � ~Aj ¼ 0,
where Iu is a unit matrix. Writing it as

l2 þ
D0

I
l�

Q

I
¼ 0,

and solving yields two roots l ¼ �D0 �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D0

2
þ 4IQ

q� �
=2I ,

which we call l1 and l2.
Using Viète’s Formulae providing the relation between

roots and coefficients in polynomial equations (Viète,
1646), the sum and product of the two roots are derived
from coefficients. Because D0 and I are positive and Q is
negative, their signs are determined as follows:

l1 þ l2 ¼ �
D0

I
o0,

l1l2 ¼ �
Q

I
40.

These results indicate that the real parts of both l1 and l2
are negative. Therefore, the cell is asymptotically stable for
small f and its direction converges to f ¼ 0.
In addition, the global stability was verified qualitatively

by calculating a potential energy U for rotation. We
defined U as

tz ¼ �
qU

qf

and computed it by numerical integration of Eq. (5) with
respect to f. Fig. 6 shows the profile of U, indicating that
the cell is stable and tends to approach f ¼ 0 for all f.

3.4. Emergence of U-turn motion

When an electric field is applied in the direction opposite
to the swimming direction of a cell, the cell makes a U-turn
motion. We tested whether our proposed model can exhibit
this phenomenon like real cells.
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Swimming trajectories for cells with eleven different
initial orientations were calculated. Fig. 7 demonstrates all
trajectories simultaneously. All cells were configured to
have the same initial position, namely, on the origin ð0; 0Þ,
but their initial angles f differed by intervals of 30�

(�150�;�120�; . . . ; 150�). An electric field of 5:0V=cm was
applied along the X-axis. The trajectory of each cell was
calculated by solving ordinary differential equations. As
shown in Fig. 7, all cells starting from the origin turned
toward the cathode, like real cells. It is interesting that
realistic macroscopic behavior emerged from a microscopic
description of the ciliary motion.

3.5. U-turn motion with spiral term and noise term

When the cell inclination f is close to �p, Fig. 5 indicates
that the torque is so small that the cell might fail to make an
U-turn, or might need an extremely long time to turn.
Actually, however, cells are certain to make an U-turn
within short time. We think that it is due to the spiral path,
as well as the perturbation of the cell angle caused by a
noise. In this section, we consider incorporating a spiral
motion, along with a noise term, into the simulation.
As mentioned in Section 2.2.1, the actual cell swims
spinning along a spiral. The spiral path can be expressed as
a sine curve (Naitoh and Sugino, 1984). To put it simply, it
is written as:

X̄ ¼ V X̄ t,

Ȳ ¼ V Ȳ cos ot,

where X̄ correspond to the spiral axis whose direction is
always oriented to the cell inclination f, Ȳ is an axis
perpendicular to Ȳ , V X̄ and V Ȳ are amplitude coefficients,
o is the angular velocity, and t is time. Let f̄ the cell
inclination with respect to the X̄ axis. Then,

tan f̄ ¼
dȲ

dX̄
¼ �o

VȲ

VX̄

sin
o

VX̄

t,

f̄ ¼ arctan �o
VȲ

VX̄

sin
o

V X̄

t

� �
.

Because the spiral axis, or X̄ axis, is always oriented to the
swimming direction f, the resulting cell angle is expressed
as the sum of the path term f and the spiral term f̄:

f fþ f̄.

Finally, by considering a noise term N, the cell angle f can
be roughly enhanced as:

f fð1þNÞ.

We performed a numerical experiment. o was set to be 2
according to the measurement (Ogawa et al., 2005). We
also set N as a brown noise with the magnitude of
8:0� 10�9, and V X̄ ¼ V Ȳ ¼ 1. Other parameters were
same as the U-turn experiment in Section 3.4. The initial
angle was set to be 180�, which means that the cell was
oriented to the anode.
Fig. 8 shows simulated trajectories for 10 trials. All cells

made a full 180� U-turn motions and swam toward the
cathode along the spiral path, although the torque was zero
at the initial point.

3.6. Input-dependent behavior dynamics

Using our model, we can investigate how the response of
a cell is influenced by the changes in the control inputs (the
magnitude and direction of the electric field). This time, we
focused on the time needed for the U-turn motion, named
U-turn time. It is defined as the time from the initial
position to the moment when it reached f ¼ 15�. The
default values for the magnitude of the electric field and the
initial angle were set to 5V/cm and 165�, respectively.
Fig. 9(a) shows the relation between the magnitude of

electric field and the U-turn time, and (b) shows that
between the angle of electric field and the U-turn time. The
U-turn time decreased as the magnitude increased or the
angle decreased, which agrees with the intuitive prediction.
Through our wet experiments, we know that the stronger

field surely increases the percentage of cells moving toward
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the cathode, but not all cells move perfectly in the electric
field direction (cells die with more than 6V/cm field in our
experiments).2 We attribute this incompleteness not to the
instability of dynamics, but to the fluctuation of the
membrane potential caused by complicated interaction
between the field and cells or among cell themselves, which
phenomenon is also widely observed under no electric field
(Oosawa, 1975, 2001).
3.7. Shape-dependent behavior dynamics

In the numerical experiments described above, the
parameter values were average values of multiple observed
cells. However, there is significant intercellular variation,
which may affect the macroscopic behavior. As an
example, we varied the size parameters R and L to examine
the effect on the behavior dynamics.
Fig. 10 shows the relationship between U-turn time and

(a) L and (b) R. R was fixed to be 12:5mm in (a) and L was
fixed to be 50mm in (b). It takes more time for more
elongated cells to make a U-turn; this is thought to be
because elongated shapes experience more resistance in
rotation than spherical ones do.
Rotation and translation are quite common motions for

paramecia, though their origin is not galvanotactic. The
ellipsoidal shape of cells might be the result of evolution,
with the trade-off that elongated bodies are favorable for
translation but adverse for rotation.
It is implied that the shape deviation cannot be neglected

for rigorous evaluation, though it gives almost no
fundamental difference in the structure of the model and
emerging behaviors. Note that our Stokes-like assumption
in motion of equations has to be reconsidered from the
2As for other species, for example, 100% of Dictyostelium cells move

directly toward the cathode under relatively strong field (�15–20V/cm)

(Zhao et al., 2002), though its mechanism is different from Paramecium

galvanotaxis.
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hydrodynamic viewpoint if more rigorous discussion is
needed, which is not dealt with in this paper.

3.8. Comparison with experimental data

We have accumulated data for paramecia motion using a
high-speed vision system called I-CPV (Toyoda et al.,
2001), which was jointly developed by Hamamatsu
Photonics K.K. and one of the authors (M. Ishikawa) of
the present paper, and a galvanotaxis continuous observa-
tion system developed in our laboratory (Ogawa et al.,
2004). We verified the validity of the model using these
data.

3.8.1. Experimental setup

Experimental data were obtained by high-speed mea-
surement of the responses of a single cell to an electric field,
using the galvanotaxis continuous measurement system
(Ogawa et al., 2004). The setup of the system is illustrated
in Fig. 11.
Wild-type P. caudatum cells were cultured at 20–25 �C in

a soy flour solution. Cells grown to the logarithmic or
stationary phase (4–10 days after incubation) were
collected together with the solution, filtered through a
nylon mesh to remove debris, and infused into a chamber.
The chamber was planar with a depth of 0.17mm in

order to constrain the motion of the cells within a two-
dimensional plane. The chamber was located between
two parallel carbon electrodes 0.5mm in diameter with a
22-mm gap between them, placed on a glass slide, in order
to control the electrical stimulus in the direction perpendi-
cular to the electrodes. In order to maintain the chamber
depth and to suppress evaporation of the solution, a cover
glass was placed on the chamber. A DC electric field with a
step-like temporal profile rising to 4.1V/cm was applied to
the cells.
Cell position and angle were continuously measured at a

1-kHz frame rate using a high-speed lock-on tracking
method (Oku et al., 2005; Ogawa et al., 2005). Lock-on
tracking, which means keeping the target in the center of
the image field, allows natural in vivo measurement of free-
swimming motile cells without fixing them or slowing them
down. Tracking was implemented by moving the chamber
using an XY stage on which it was mounted, based on
target information captured by the I-CPV high-speed
vision system. The I-CPV system includes an image
intensifier and a Column Parallel Vision (CPV) system,
which is a high-speed vision system developed for robotic
applications (Nakabo et al., 2000). It has a frame rate of
1 kHz and can execute various operations, such as global
image feature extraction, edge extraction, embossing and
blurring, within 1ms. The I-CPV system was mounted on
an upright optical microscope (Olympus, BX50WI) and
captured dark-field images. From the captured images, the
I-CPV obtained image features and sent them to a PC.
These features were used for the visual feedback control of
the XY stage and the applied electrical stimulus. Fig. 11C
shows an example of the tracked image of a Paramecium

cell making a U-turn.

3.8.2. Comparison of data

We compared simulated and experimental positions in
the U-turn motion. We extracted positions along the
electric field (X direction), because X-disposition is almost
independent of fluctuations caused by spiral motions,
which we disregarded.
Fig. 12 shows experimental data (thin lines) for three

seconds from application of a stimulus (reversal of
the electric field) in six trials. In the simulation (thick
line), the initial angle was set to 33:6457�, which is the
average of angles obtained from previously measured
data. The field strength was set to 4.1V/cm same as the
wet experiment. The figure indicates that the simulated
data was approximately in agreement with the experi-
mental results.
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Fig. 11. Experimental setup of our tracking system. (A): Schematic overview of the galvanotaxis continuous observation system (Ogawa et al., 2004). Cells

are infused into a planar chamber on a glass slide. Two electrodes apply an electric field to the chamber. The cell motion is tracked by the high-speed vision

system I-CPV so as to keep the cell in the center of the microscope field; I-CPV captures the images with 1-kHz frame rate and calculates image features,

which are used to control the XY stage. (B): Photograph of the system. (C): An example of U-turn motion observed by our system. Note that I-CPV does

not provide the captured images to the outside, and these images were simultaneously captured by a branched CCD camera (this is why their aspect ratio is

not 1:1). White arrows indicate the direction of the electric field.

3Personal communications by Naitoh, Y. (2004), Kuroda, S. (2004), and

Oosawa, F. (2005).
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This comparison is not a strict one because the experi-
mental data represents the projection of real three-dimen-
sional trajectories onto a two-dimensional plane. Although
the planar structure of the chamber helps to restrict the
vertical motion, the cell can still move slightly in this
direction. A more rigorous comparison will require three-
dimensional tracking. We are developing three-dimensional
tracking methods for our work (Oku et al., 2004; Theodorus
et al., 2005), and experiments are currently underway in our
laboratory. Or the disparities might be due to stabilization
time for the electrochemical phenomenon, which is
supposed to be several hundred milliseconds, or the
asymmetrical deviation of the cell shape (Mogami et al.,
2001), though they are just a matter for speculation. We are
planning to investigate it more precisely by wet experiments.

4. Conclusion

In this paper, we proposed a physical model of
Paramecium galvanotaxis using a bottom–up approach to
link the microscopic ciliary motion and the macroscopic
behavior of a cell, and we investigated the validity of the
model by numerical experiments.
One possible development of our model would be to

incorporate physiological findings, regarded as black boxes
in this paper. A complete framework from input to output,
from the micro to macro scales, will provide a more accurate
prediction of cell behavior. However, such work has a long
way to go because some ion channels, including VDCCs, in
Paramecium cells do not comply with simple conventional
models such as the Hodgkin–Huxley equation3 and details
of their behavior remain unknown. As for ciliary movement,
Naitoh and Kaneko (1973) reported that Ca2þ level rise
affects axoneme movements, thus leading to ciliary reversal.
cAMP and centrin are also essential to regulate ciliary
movements (Satir et al., 1993; Gonda et al., 2004). We are
planning to consider them from the viewpoint of system
biology. Another interesting point to consider is stochastic
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processes in the cells (Oosawa, 2001). The behavior of cells is
not always deterministic and there is a wide diversity of
behavior in paramecia. In addition, more comprehensive
evaluation of the model based on three-dimensional data of
cell trajectories will play an important role in future studies.
Such work is currently underway in our laboratory.

Appendix A. Nomenclature
Variables
 Definition
L
 semimajor cell axis

R
 semiminor cell axis

l
 boundary plane offset

m
 water viscosity

r
 cell density

b
 beat frequency increase

X
 X -position in global coordinate system

Y
 Y -position in global coordinate system

X
 position in global coordinate system

f
 cell angle in global coordinate system

x
 x-position in local coordinate system

y
 y-position in local coordinate system

y
 electric field angle

E
 electric field vector

E
 cell ellipsoid

L
 boundary plane

n
 cilia linear density

j0
 beat frequency under E ¼ 0
j
 beat frequency under E

f 0
 force by single cilium under E ¼ 0

f
 force by single cilium under E

a
 parameter between f and j

xþ
 x-coordinate of the intersection of E and L

(with positive y-coordinate)

x�
 x-coordinate of the intersection of E and L

(with negative y-coordinate)

w
 the ‘‘height’’ of the trapezoid

Pf1;2g
 sites of action
rf1;2g
 position vectors for Pf1;2g

xa
 x-coordinate of Pf1;2g

ya
 y-coordinate of Pf1;2g

Ff1;2g
 resultant forces on Pf1;2g

mf1;2g
 tangent vectors on Pf1;2g

ef1;2g
 unit force vectors
sf1;2g
 torques on Pf1;2g

s
 whole torque

tzðfÞ
 z-component of s
s
 sin f

c
 cos f

F
 whole propulsion force

F
 whole propulsion force vector

F s
 force given by Stokes’ law

ts
 viscous resistant torque given by Stokes’ law

Re
 Reynolds number

v
 cell velocity
n
 dynamic viscosity of water

D
 viscous friction coefficient

M
 cell mass

V
 cell volume

e
 unit vector parallel to the cell axis

d
 coefficient for compensate error

I
 moment of inertia for ellipse

D0
 viscous friction coefficient

q
 generalized coordinates

A
 system matrix for q

B
 input vector for q

~q
 part of q

~A
 system matrix for ~q
Iu
 2� 2 unit matrix

l
 variables for characteristic equation

P
 coefficient for the propulsion force

Q
 coefficient for the torque

U
 potential energy
X̄
 spiral axis
Ȳ
 an axis perpendicular to X̄
VX̄
 amplitude coefficient for X̄
VȲ
 amplitude coefficient for Ȳ
o
 angular velocity of the spiral motion
f̄
 cell inclination with respect to X̄
N
 brown noise term
Appendix B. How to obtain xa and w from xþ and x�

In this section, we describe briefly how to obtain xa and
w from xþ and x� by using Viète’s Formulae.
Viète’s Formulae, also used in Section 3.3, provide

relationship between roots and coefficients in polynomial
equations Viète, 1646; Waerden, 1977; Farkas and Farkas,
1975. The sum and product of the two roots of a quadratic
equation are derived from coefficients.
Assume an n-degree polynomial equation:

anxn þ an�1x
n�1 þ � � � þ a1xþ a0

¼ ðx� r1Þðx� r2Þ � � � ðx� rnÞ ¼ 0.

Let Si be a symmetric polynomial of the distinct
polynomial roots, r1; . . . ; rn. For example, the first few
values of Si are:

S1 ¼ r1 þ r2 þ r3 þ r4 þ � � � ,

S2 ¼ r1r2 þ r1r3 þ r1r4 þ r2r3 þ � � � ,

S3 ¼ r1r2r3 þ r1r2r4 þ r2r3r4 þ � � � .

Then the Viète’s formulae state that:

Si ¼ ð�1Þ
i an�i

an

.

Particularly in a quadratic equation, this is expressed as:

S1 ¼ r1 þ r2 ¼ �
a1

a2
,
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S2 ¼ r1r2 ¼
a0

a2
.

These were used in deriving xa and w in the dynamics
model of Paramecium in Section 2.3. From their defini-
tions, xa and w are written as:

xa ¼
x� þ xþ

2
,

w ¼ x� � xþ,

where xþ and x� are roots of the quadratic equation (3).
By applying Viète’s formulae to Eq. (3), we obtain:

xþ þ x� ¼
2lL2 cos y

R2 sin2 yþ L2 cos2 y
,

xþx� ¼
l2L2 � R2L2 sin2 y

R2 sin2 yþ L2 cos2 y
,

x� � xþ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx� þ xþÞ

2
� 4x�xþ

q
.

Thus xa and w are derived as:

xa ¼
lL2 cos y

R2 sin2 yþ L2 cos2 y
,

w ¼
2RL sin y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 sin2 yþ L2 cos2 y� l2

p
R2 sin2 yþ L2 cos2 y

,

where the sign of w is properly set to match consistency of
the physical dynamics.

Appendix C. Asymptotic stability in dynamical systems

We briefly describe the asymptotic stability in dynamical
systems theory.

In the differential equation

dxðtÞ

dt
¼ AxðtÞ, (C.1)

if the solution xðtÞ converges to zero with t! 0 for an
arbitrary initial condition, the system is called asymptoti-
cally stable.

The general solution of Eq. (C.1) is:

xðtÞ ¼ eAtxð0Þ.

For simplicity, suppose that all eigenvalues of A,
l1; l2; . . . ; ln, are discrete. Also, let v1; v2; . . . ; vn be eigen-
vectors of A. Then, expðAtÞ can be diagonalized as:

eAt ¼
X1
k¼0

1

k!
ðAtÞk

¼
X1
k¼0

1

k!
ðTLT�1tÞk

¼ T
X1
k¼0

1

k!
ðLtÞk

 !
T�1

¼ T diagðel1t; . . . ; elntÞ
� �

T�1
where T ¼ ½v1 � � � vn�, and L ¼ diagðl1; . . . ; lnÞ is a diagonal
matrix of A. This shows that negative eigenvalues are
necessary and sufficient condition for asymptotic conver-
gence of x to zero as t!1; if eigenvalues are non-
negative, x will diverge exponentially. This is also true
when eigenvalues are not discrete.
References

Anderson, J.D., 1951. Galvanotaxis of slime mold. J. Gen. Physiol. 35 (1),

1–16.

Bergethon, P.R., 1998. The Physical Basis of Biochemistry: The

Foundations of Molecular Biophysics. Springer, New York.

Chiang, M., Robinson, K.R., Vanable Jr., J.W., 1992. Electrical fields in

the vicinity of epithelial wounds in the isolated bovine eye. Exp. Eye

Res. 54, 999–1003.

Cooper, M.S., Schliwa, M., 1985. Electric and ionic controls of tissue cell

locomotion in DC electric fields. J. Neurosci. Res. 13, 223–244.

Djamgoz, M.B.A., Mycielska, M., Madeja, Z., Fraser, S.P., Korohoda,

W., 2001. Directional movement of rat prostate cancer cells in direct-

current electric field: involvement of voltage-gated Naþ channel

activity. J. Cell Sci. 114 (14), 2697–2705.

Eckert, R., Naitoh, Y., 1970. Passive electrical properties of Paramecium

and problems of ciliary coordination. J. Gen. Physiol. 55 (4), 467–483.

Eckert, R., Naitoh, Y., 1972. Bioelectric control of locomotion in the

ciliates. J. Protozool. 19 (2), 237–243.

Erickson, C.A., Nuccitelli, R., 1984. Embryonic fibroblast motility and

orientation can be influenced by physiological electric fields. J. Cell

Biol. 98 (1), 296–307.

Farkas, I., Farkas, M., 1975. Introduction to Linear Algebra. Adam

Hilger, Bristol.

Fearing, R.S., 1991. Control of a micro-organism as a prototype micro-

robot. In: Proceedings of Second International Symposium on

Micromachines and Human Sciences.

Fukui, K., Asai, H., 1980. The most probable mechanism of the negative

geotaxis of Paramecium caudatum. Proc. Japan Acad. Ser. B: Phys.

Biol. Sci. 56 (B), 172–177.

Fukushima, K., Senda, N., Inui, H., Miura, H., Tamai, Y., Murakami, Y.,

1953. Studies on galvanotaxis of leukocytes. I. Galvanotaxis of human

neutrophilic leukocytes and methods of its measurement. Med. J.

Osaka Univ. 4, 195–208.

Gonda, K., Yoshida, A., Oami, K., Takahashi, M., 2004. Centrin is

essential for the activity of the ciliary reversal-coupled voltage-gated

Ca2þ channels. Biochem. Biophys. Res. Comm. 323 (3), 891–897.
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